Planning and Executing an Effective Transit Grinding Program

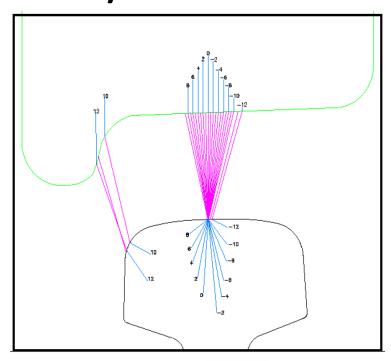
WRI 2019: Rail Transit Seminar

Charles Rudeen, Chief Engineer Rail Quality, Loram Maintenance of Way Roger Luedke, Chief Engineer Rail Grinding, Loram Maintenance of Way

WRI 20019

Outline

- Why grind transit systems?
- System rail health review
- **Developing a grinding specification**
- **Grind planning**
- **Execute the grind**
- Follow-Up


Why Grind Transit Systems?



Why Grind Transit Systems? Wheel/Rail Interaction Mill Scale Removal

4

RAIL TRANSIT SEMINAR . JUNE 18, 2019

Why Grind Transit Systems?

Corrugation

Ride quality

Noise concerns

Rail Wear

Wheel Wear

Corrugation

Gage Corner Checking

Rolling Contact Fatigue (RCF)

5

RAIL TRANSIT SEMINAR • JUNE 18, 2019

Items to consider/measure

- 1. Transverse profile shape
- 2. Wheel/Rail interface (running band width & location)
- 3. Corrugation (Longitudinal profile)
- 4. Rail surface condition issues

Transverse profile shape (basic tools)

1. Star/Radius gauge

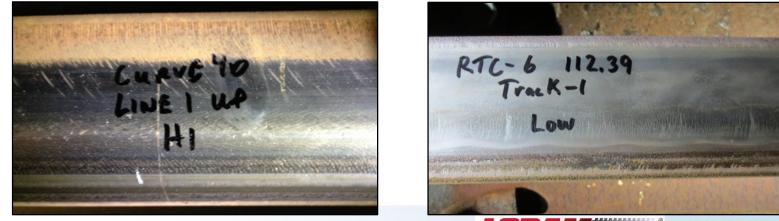
RAIL TRANSIT SEMINAR . JUNE 18, 2019

Transverse profile shape (advanced tools)

Provides a digital record of the pre/post-grind to the target rail profile

1. Laser based vehicle mounted

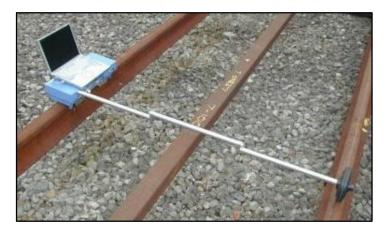
2. Handheld device


WRI 2019

AIL TRANSIT SEMINAR . JUNE 18, 2019

Wheel/Rail Interface (running band width and location)

1. Indicates how the current wheel and rail profile shapes interact with each other

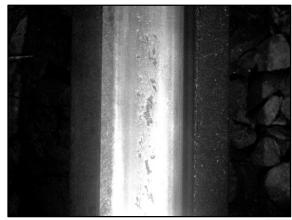

RAIL TRANSIT SEMINAR . JUNE 18, 2019

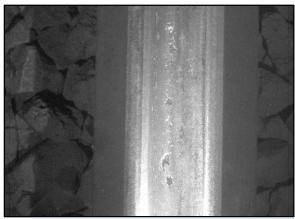
WRI 2019

Corrugation (longitudinal profile) inspection

- 1. Observed ride quality
- 2. Straight edge

- 3. Hand operated trolley
- 4. Noise Study





Rail surface condition issues, typically RCF

- 1. Manual inspection
- 2. Camera systems
- 3. Rail crack measurement systems, trolley or vehicle mounted

12

AIL TRANSIT SEMINAR . JUNE 18, 2019

Other items to consider

- 1. Track Structure (Gauge, Curve Radius, Fixation, Restraining Rail, etc...)
- 2. Track Obstacles and Clearance Envelope
- 3. Revenue Vehicle Information (Axle Weight, Annual Tonnage, etc...)

- Develop the specification to address the issues that are being experienced on the transit system:
 - **1.** Transverse profile templates and tolerances
 - 2. Longitudinal profile tolerances
 - 3. Rail Surface Finish
 - 4. Re-Profiling range (angle range field to gauge)
 - 5. Facet width

- Transverse profile can be used to address wheel and rail wear
 - 1. Specify the target rail profile shape (template) to achieve through grinding
 - 2. May specify Tangent, High, or Low rail templates
 - 3. Assign templates to specific track sections, i.e. by milepost and curve

Options for designing transverse profile templates

- 1. System wide wheel/rail interaction study
- 2. Defined rail head radius
- 3. Practical implementation of appropriate running band
- 4. New rail shape (i.e. 115 RE)

Transverse profile tolerances

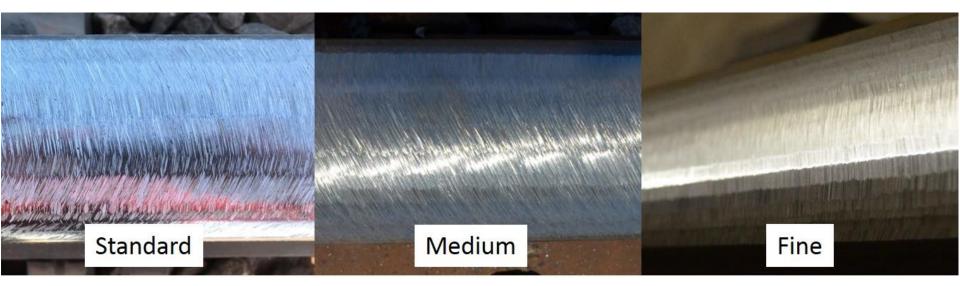
- 1. Typically given in terms of +/- tolerance for post-grind profile in relation to target rail profile
- 2. Current Reference Standard: EN 13231-3:2012

Corrugation and noise issues may be addressed with longitudinal profile tolerances

- 1. Specify wavelength ranges, amplitude tolerances, and the % exceeding limits.
- 2. Tighter tolerances reduces the re-growth rate of corrugation but it requires additional grinding effort.
- 3. Current Reference Standard: EN 13231-3:2012

Developing a Grinding Specification Post grind noise and vibration may be addressed with rail surface finish

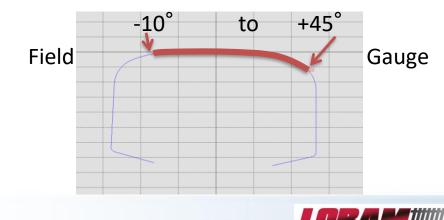
(Available stone types)


20

WRI 2**0**19

RAIL TRANSIT SEMINAR . JUNE 18, 2019

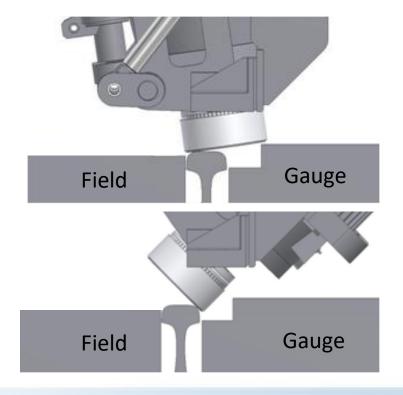
Developing a Grinding Specification Post grind noise and vibration may be addressed with rail surface finish (Rail Finish Examples)


Developing a Grinding Specification Post grind noise and vibration may be addressed with rail surface finish

- 1. Measured with a stylus and outputs the 'Ra' value
- 2. Transit systems with lighter axle loads may target a finer finish
- 3. Current Reference Standard is 10µm from EN 13231-3:2012

Re-Profiling range (angle range field to gauge)

- 1. Range may vary depending on template and railroad requirements
- 2. Open rail angle range may be different than embedded rail or specialty track work

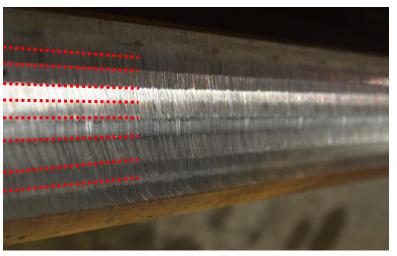


JUNE

Re-Profiling range

(clearance restrictions)

Similar metal removal achievable but in a limited angle range

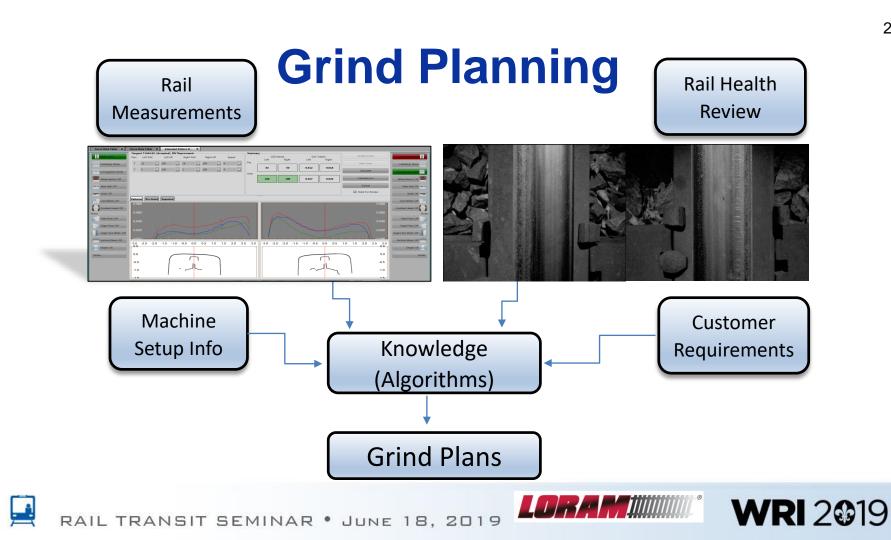


24

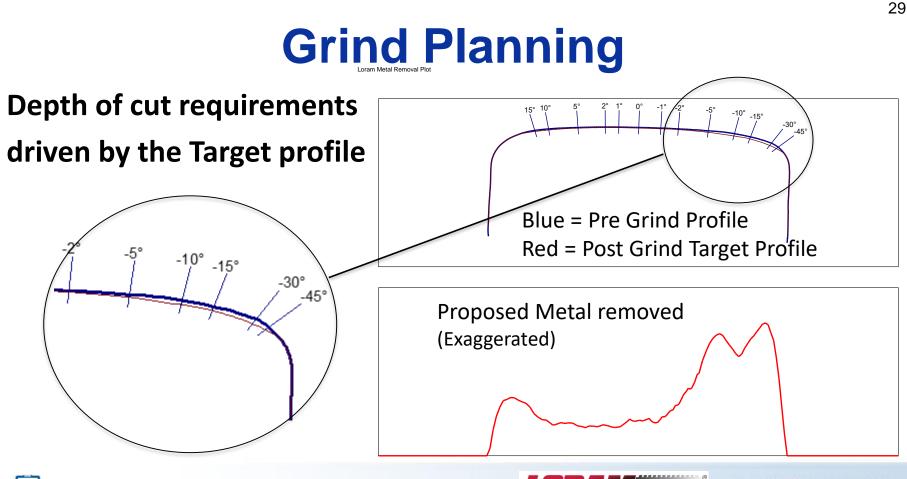
VRI 2**0**19

Developing a Grinding Specification Facet width

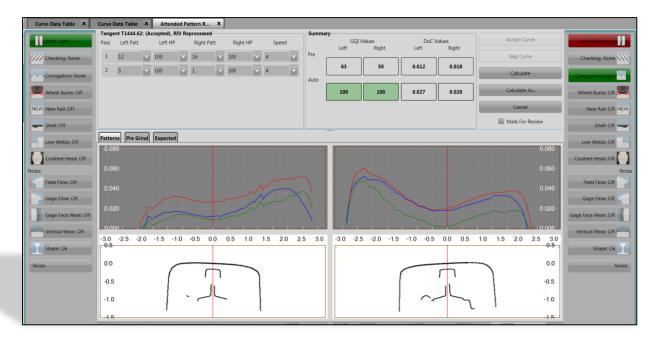
- 1. Define maximum width depending on location on railhead
 - a. Current Reference Standard: EN 13231-3:2012
- 2. Facets should be a consistent width longitudinally along the rail
- 3. Too few facets leads to undesirable sharp peaks between facets



Grind Planning Pre-Grind Inspection


- 1. Rail surface damage
- 2. Transverse Profile review
- 3. Longitudinal Profile review
- 4. Depth of cut needs

RAIL TRANSIT SEMINAR . JUNE 18, 2019


Software Tools to select Grind

Patterns

30

- 1. Rail surface damage
- 2. Desired target rail profiles

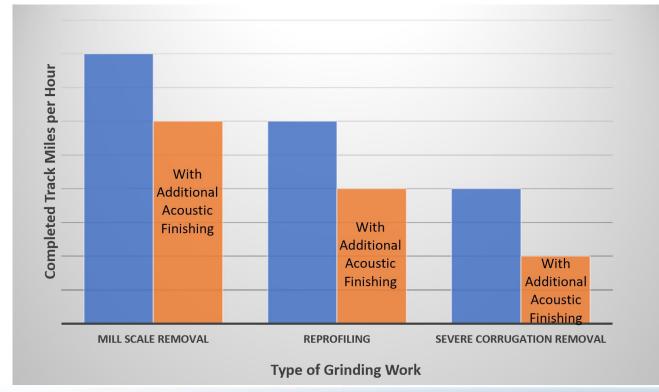
Output: Grind Pattern and Speeds

Results in a detailed work plan

Track location, grind pattern, # of passes, and grind speed

Track Information									Planned Grind							Work Time	
Chain Fro	Chain To 🔻	Trac	Curve Nar 💌	Degre e of Cun •		Length (cha	Features 💌	Left Rail Pattei ▼	Right Rail	Left Rail Passe ▼	Right Rail Passe ▼	Spee	Additional Passes	Comments	Work Time • (min) •	Total Time (min) 💌	
311.4	317.6	1	311.39	2.00	L	6.21		13	18	15	15	7	14/18 at 7 mph, 4/1 at 7 mph		44.7	45	
359.1	371.3	1	359.12	2.00	R	12.21	Sensor @ MP362.99, Xing @ MP363.70	24	14	10	10	7	7/4 at 7 mph,	Left: light corr/Right: light corr	49.1	95	
372.8	375.9	1	372.78	2.00	L	3.10		14	23	15	15	7	25/24 at 7 mph, 4/10 at 7 mph	Left: mod corr/Right: mod corr	29.6	125	
380.6	387.4	1	380.59	2.00	R	6.77	Sensor @ MP385.50	24	14	10	10	5	8/4 at 5 mph,	Left: mod corr/Right: mod corr	40.3	166	
387.4	396.9	1	387.72	2.00	L	9.56		25	18	15	15	7	14/11 at 7 mph, 5/9 at 7 mph	Left: mod corr/Right: mod corr	61.1	228	
424.6	432.7	1	424.62	2.00	L	8.12	Sensor @ MP427.49, Sensor @ MP431.12, Xing @ MP431.74	25	23	15	15	7	14/24 at 7 mph, 5/8 at 7 mph	Left: mod corr/Right: mod corr	54.0	283	
458.4	463	1	458.45	2.00	L	4.52		14	7	10	5	6	4/X at 6 mph,		26.6	310	
463	485	1	T462.97	0.00		21.98	Xing @ MP468.95, Xing @ MP470.03, Xing @ MP471.79, Xing @ MP473.89, Xing @ MP478.42	11	17	10	10	6	5/7 at 6 mph,	Left: mod corr/Right: mod corr	92.8	403	
310.4	317.8	2	310.43	2.00	L	7.41	Xing @ MP311.36, Sensor @ MP311.89	13	23	15	15	7	14/19 at 7 mph, 4/7 at 7 mph	Left: mod corr/Right: mod corr	50.6	454	
380	387.6	2	379.96	2.00	R	7.66	Sensor @ MP385.64	5	5	5	5	6		Right: light corr	19.0	474	
456.6	462.1	2	456.65	2.00	L	5.46	Sensor @ MP459.83	14	7	10	5	5	2/X at 5 mph,	Left: light corr/Right: light corr	34.3	509	

31


AIL TRANSIT SEMINAR . JUNE 18, 2019

Grind productivity comparison

32

RAIL TRANSIT SEMINAR . JUNE 18, 2019

Executing the Grind

Executing the Grind

Scheduling track time and support staff

- 1. Short term corrective or long term preventive program
- 2. Make the most of available track time
- 3. Review support staff requirements for the project
- 4. Review logistics of deploying the grinder to the transit system and specific work locations

Executing the Grind

Perform the work per the plan, per the grinding specification, and gather quality assurance data

- 1. Collect post-grind measurements to document the quality of the work performed and to use as baseline
 - a. Transverse profile
 - b. Longitudinal profile
 - c. Surface finish
 - d. RCF

Follow-Up

Schedule additional post-grind inspections, for example at 6 month to 1 year intervals

- 1. Inspect running bands
- 2. Inspect for RCF
- 3. Inspect for corrugation development
- 4. Develop a timeline for the next grind cycle(s)

Conclusions

Key points

- 1. System rail health review and pre-grind inspections will optimize the work to be performed
- 2. Grinding specification helps ensure benefits are realized
- 3. Plan the work for the available track time
- 4. Periodically follow up to determine system health and future grinding needs
- 5. Grinding is flexible enough to address a wide range of issues and requirements

Thank You For Your Time

RAIL TRANSIT SEMINAR . JUNE 18, 2019

